Attēls:Demm 2000 Mandelbrot set.jpg
Sākotnējais fails (3 000 × 3 000 pikseļi, faila izmērs: 2,15 MB, MIME tips: image/jpeg)
Fails ir no Wikimedia Commons, tāpēc tas var tikt izmantots citos projektos. Apraksts ir faila apraksta lapā, kas ir parādīta zemāk.
This image was uploaded in the JPEG format even though it consists of non-photographic data. This information could be stored more efficiently or accurately in the PNG or SVG format. If possible, please upload a PNG or SVG version of this image without compression artifacts, derived from a non-JPEG source (or with existing artifacts removed). After doing so, please tag the JPEG version with {{Superseded|NewImage.ext}} and remove this tag. This tag should not be applied to photographs or scans. If this image is a diagram or other image suitable for vectorisation, please tag this image with {{Convert to SVG}} instead of {{BadJPEG}}. If not suitable for vectorisation, use {{Convert to PNG}}. For more information, see {{BadJPEG}}. |
AprakstsDemm 2000 Mandelbrot set.jpg | Mandelbrot set for F(z) = z2 + c using Milnor algorithm = DEM/M | |||
Avots | Paša darbs | |||
Autors | Adam majewski | |||
Atļauja: (Šī faila izmantošana citur) |
|
Satura rādītājs
Compare with
-
Image with C++ code, without zoom and different algorithm
-
contiunous escape time with C code
-
continous colour but without algorithm
Kopsavilkums
The image contains a rectangular region: corners of c-plane C_Plane.eCxMin:= -2,5 C_Plane.eCxMax:= 1,5 C_Plane.eCyMin:= -2 C_Plane.eCyMax:= 2
center and sides of c-plane C_Plane.Center.x:= -0,5 C_Plane.Center.y:= 0 C_Plane.width:= 4 C_Plane.height:= 4
Bitmap size in pixels: Bitmap Width= 3000 Bitmap Height= 3000
Number of bitmap points = 9000000 points
Drawing Time := 21625 miliseconds
Bitmapa.PixelFormat = pf32bit Maximal number of iterations= 1000
Escape Radius= 100
Image is made with program MandelbrotSetExplorer archive copy at the Wayback Machine It is made using: programing language: object Pascal IDE: Borland Delphi 6.0 - 7.0 personal edition - 10.0 Turbo Explorer programing style : libaries : standard = VCL
OS: windows
Bitmap image is transformed to jpg with IrfanView
author: Adam Majewski fraktal.republika.pl 20003- 2007
Delphi Pascal src code
{ spoken language: english programming language: Pascal ( Borland object Pascal ) compiler: VER 140 IDE: Borland Delphi 7.0 personal edition programming style : obiektowy programming method : visual (RAD) target: CPU library: standard = VCL program type : GUI application licence: GNU GPL OS: win32 (windows 98 SE hardware: PC platform: ix86 author: Adam Majewski adammaj1- at - o2 - dot - pl republika.pl/fraktal walbrzych poland 2005.12.12 }
Computing color from RGB gradient
// **********************************************************************************************************
function Rainbow(iMin, iMax, i: Integer): TColor;
// gives rainbow gradient of color
// Opracował Witold J.Janik; WJJ@CAD.PL
// ***
// Funkcja FnTecza umożliwia narysowanie
// tęczy przy zmianie [i] od [iMin] do [iMax]
// podziękowania dla Andrzeja Wšsika z [pl.comp.lang.delphi]
// http://4programmers.net/view.php?id=201
var
m: Double;
r, g, b, mt: Byte;
begin
m := (i - iMin)/(iMax - iMin + 1) * 6;
mt := abs((round(frac(m)*$FF)));// added abs ; why ? erange check eror
case Trunc(m) of
0: begin
R := $FF;
G := mt;
B := 0;
end;
1: begin
R := $FF - mt;
G := $FF;
B := 0;
end;
2: begin
R := 0;
G := $FF;
B := mt;
end;
3: begin
R := 0;
G := $FF - mt;
B := $FF;
end;
4: begin
R := mt;
G := 0;
B := $FF;
end;
5: begin
R := $ff;
G := 0;
B := $FF - mt;
end;
end; // case
Result := rgb(R,G,B);
end;
//-------------------------------
exterior Distance Estimastion Method for Mandelbrot set (DEM/M)
Function PointIsInCardioid (Cx,Cy:extended):boolean;
//Hugh Allen
// http://homepages.borland.com/ccalvert/Contest/MarchContest/Fractal/Source/HughAllen.zip
var DeltaX,DeltaY:extended;
//
PDeltyX,PDeltyY:extended;
//
ZFixedX,ZFixedY:extended;
begin
result:=false;
// cardioid checkig - thx to Hugh Allen
//sprawdzamy Czy punkt C jest w głównej kardioidzie
//Cardioid in squere :[-0.75,0.4] x [ -0.65,0.65]
if InRange(Cx,-0.75,0.4)and InRange(Cy,-0.65,065) then
begin
// M1= all C for which Fc(z) has attractive( = stable) fixed point
// znajdyjemy punkt staly z: z=z*z+c
// czyli rozwiazujemy rownanie kwadratowe
// zmiennej zespolonej o wspolczynnikach zespolonych
// Z*Z - Z + C = 0
//Delta:=1-4*a*c; Delta i C sa liczbami zespolonymi
DeltaX:=1-4*Cx;
DeltaY:=-4*Cy;
// Pierwiastek zespolony z delty
CmplxSqrt(DeltaX,DeltaY,PDeltyX,PDeltyY);
// obliczmy punkt staly jeden z dwóch, ten jest prawdopodobnie przycišgajšcy
ZFixedX:=1.0-PDeltyX; //0.5-0.5*PDeltyX;
ZFixedY:=PDeltyY; //-0.5*PDeltyY;
// jesli punkt stały jest przycišgajšcy
// to należy do M1
If (ZfixedX*ZFixedX + ZFixedY*ZFixedY)<1.0
then result:=true;
// ominięcie iteracji M1 przyspiesza 3500 do 1500 msek
end; // if InRange(Cx ...
end;
//------------------------------------
Function PointIsInComponent (Cx,Cy:extended):boolean;
//Hugh Allen
// http://homepages.borland.com/ccalvert/Contest/MarchContest/Fractal/Source/HughAllen.zip
var Dx:extended;
begin
result:=false;
// czy punkt C nalezy do koła na lewo od kardioidy
// circle: center = -1.0 and radius 1/4
dx:=Cx+1.0;
if (Dx*Dx+Cy*Cy) < 0.0625
then result:=true;
end;
Function GiveDistance(xy2,eDx,eDy:extended):extended;
begin
result:=2*log2(sqrt(xy2))*sqrt(xy2)/sqrt(sqr(eDx)+sqr(eDy));
end;
//------------------------------------
//------------------------------
Procedure DrawDEM_DazibaoTrueColor;
// draws Mandelbrot set in black and its complement in true color
// see http://ibiblio.org/e-notes/MSet/DEstim.htm
// by Evgeny Demidov
//
// see also
//http://www.mandelbrot-dazibao.com/Mset/Mset.htm
// translation ( with modification) of Q-Basic program:
// http://www.mandelbrot-dazibao.com/Mset/Mdb3.bas
//
// see also my page http://republika.pl/fraktal/mset_dem.html
var iter:integer;
iY,iX:integer;
eCy ,eCx:extended; // C:=eCx + eCy*i
eX,eY:extended; // Zn:=eX+eY*i
eTempX,eTempY:extended;
eX2,eY2:extended; //x2:=eX*eX; y2:=eY*eY;
eXY2:extended; // xy2:=x2+y2;
eXY4:extended;
eTempDx,eTempDy:extended;
eDx,eDy:extended; // derivative
distance:extended;
color:TColor;
begin
//compute bitmap
for iY:= iYmin to iYMax do
begin
eCy:=Convert_iY_to_eY(iY);
for iX:= iXmin to iXmax do
begin
eCx:=Convert_iX_to_eX(iX);
If not PointIsInCardioid (eCx,eCy) and not PointIsInComponent(eCx,eCy)
then
begin
// Z0:=0+0*i
eX:=0;
eY:=0;
eTempX:=0;
eTempY:=0;
//
eX2:=0;
eY2:=0;
eXY2:=0;
//
eDx:=0;
eDy:=0;
eTempDx:=0;
eTempDy:=0;
//
iter:=0;
// iteration of Z ; Z= Z*z +c
while ((iter<IterationMax) and (eXY2<=BailOut2)) do
begin
inc(iter);
//
eTempY:=2*eX*eY + eCy;
eTempX:=eX2-eY2 + eCx;
//
eX2:=eTempX*eTempX;
eY2:=eTempY*eTempY;
//
eTempDx:=1+2*(eX*eDx-eY*eDy);
eTempDy:=2*(eX*eDY+eY*eDx);
//
eXY2:=eX2+eY2;
//
eX:=ETempX;
eY:=eTempY;
//
eDx:=eTempDx;
eDy:=eTempDy;
end; // while
// drawing procedure
if (iter<IterationMax)
then
begin
distance:= GiveDistance(eXY2,eDx,eDy);
color:=Rainbow(1,500,Abs(Round(100*Log10(distance)) mod 500));
with Bitmap1.FirstLine[iY*Bitmap1.LineLength+iX] do
begin
B := GetBValue(color);
G := GetGValue(color);
R := GetRValue(color);
//A := 0;
end; // with FirstLine[Y*LineLength+X]
end // if (iter<IterationMax) then
else with Bitmap1.FirstLine[iY*Bitmap1.LineLength+iX] do
begin
B := 0;
G := 0;
R := 0;
//A := 0;
end;
//--- end of drawing procedure ---
end // If not PointIsInCardioid ... then
else with Bitmap1.FirstLine[iY*Bitmap1.LineLength+iX] do
begin
B := 0;
G := 0;
R := 0;
//A := 0;
end;
//--- If not PointIsInCardioid ...
end; // for iX
end; // for iY
end;
//------------------------------------------------------
Bitmap
Interface
uses graphics;
CONST
PixelCountMax = 32768;
TYPE
//http://www.efg2.com/Lab/ImageProcessing/Scanline.htm
// 24-bit color bitmap
TRGBTriple =RECORD
rgbtBlue : BYTE;
rgbtGreen: BYTE;
rgbtRed : BYTE;
END;
TRGBTripleArray = ARRAY[0..PixelCountMax-1] OF TRGBTriple;
pRGBTripleArray = ^TRGBTripleArray;
//
TRGB32 = record B, G, R, A: Byte; end;
TRGB32Array = array[0..MaxInt div SizeOf(TRGB32)-1] of TRGB32;
PRGB32Array = ^TRGB32Array;
//-----------------------
TBitmap32bit=class(TBitmap)
public
LineLength : Longint;
FirstLine : PRGB32Array;
Procedure Default;
Procedure Clear;
Procedure Refresh;
end; // class
//--------------------------
Var Bitmap1:TBitmap32bit;
iXmin,iYmin,iXmax,iYmax :integer;
// pf24bit
LineLength24 : Longint;
FirstLine24 : pRGBTripleArray;
Row24 : pRGBTripleArray;
//----------------------------------------------------
Implementation
//----------------------------------------------------
Procedure TBitmap32bit.Default;
begin
Bitmap1.Width:=400; //
Bitmap1.Height:=400; //
//
Bitmap1.Refresh;
end;
//------------------------------------------
Procedure TBitmap32bit.Clear;
// clear (= make white) all points of the Bitmap1
var iX,iY:integer;
begin
for iX:=0 to Bitmap1.Width-1 do
For iY :=0 to Bitmap1.Height-1 do
with Bitmap1.FirstLine[iY*Bitmap1.LineLength+iX] do
begin // all points white
B := 255;
G := 255;
R := 255;
//A := 0;
end;
end;
//---------------------------------------------------------------
Procedure TBitmap32bit.Refresh;
begin
iXmin:=0;
iYmin:=0;
iXmax:=Bitmap1.Width-1;
iYmax:=Bitmap1.Height-1;
//
Bitmap1.FirstLine := Bitmap1.Scanline[0];
Bitmap1.LineLength := (Longint(Bitmap1.Scanline[1]) - Longint(Bitmap1.FirstLine)) div SizeOf(TRGB32);
//
end;
//---------------------------------------------
Initialization
Bitmap1 := TBitmap32bit.Create; { construct the Bitmap1 object }
//
Bitmap1.PixelFormat:=pf32bit;
//
Bitmap1.Default; // see BitmapU
//---------------------------------------
END.
Šajā failā attēlotais
attēlo
Šai īpašībai ir vērtība, bet tā ir nezināma
image/jpeg
Faila hronoloģija
Uzklikšķini uz datums/laiks kolonnā esošās saites, lai apskatītos, kā šis fails izskatījās tad.
Datums/Laiks | Attēls | Izmēri | Dalībnieks | Komentārs | |
---|---|---|---|---|---|
tagadējais | 2007. gada 27. aprīlis, plkst. 14.57 | 3 000 × 3 000 (2,15 MB) | wikimediacommons>Soul windsurfer | {{Information |Description=Mandelbrot set for F(z)=z*z+c using Milnor algorithm = DEM/M |Source=self-made |Date= |Author= User:Adam majewski {{PD-user-en|Adam majewski}} }} |
Faila lietojums
Šo failu izmanto šajā 1 lapā: